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Abstract 

A trial expression for the ground state energy of a system of many bosons interacting with 
strong forces is studied. Using an approximate expression for the pair-distribution 
function and applying the variational principle in an appropriate way, we obtain a 
non-linear integrodifferential equation for the correlation functionf(r). This equation is 
subsequently linearised and its behaviour for large separations is studied. It is also shown 
that for large separations an effective reduced mass of the pair can be defined. This is 
given by/x* = 2tx, where tx = m/2 is the reduced mass of the pair. 

1. Introduction 

The study of many-particle boson systems has been the subject of  
theoretical investigations by a considerable number of  people during the 
past years (Aviles, 1958 ; Jastrow, 1955; Feynman, 1953 ; Feenberg & Wu, 
1961; Jackson & Feenberg, 1961; Feenberg, 1969; Gross, 1966; Enderby 
et al., 1965 ; Reatto & Chester, 1967). 

As is well known, systems of this sort, like liquid He 4, have also aroused 
the interest of  experimentalists, and their properties have been studied in 
detail. 

The starting-point of  the present investigation is the work of Aviles 
(1958), in which some very interesting remarks were made about  deter- 
mination of the correlation function and evaluation of the ground state 
energy of a system of many bosons interacting with strong forces. The 
work of Aviles was based on that of Jastrow, who used cluster expansion 
techniques, known from the theory of classical imperfect gases, in order 
to calculate the ground state energy of many-particle boson and fermion 
systems. 

In the next section the notation used is specified and the expression of 
the expectation value of the Hamiltonian which is derived by means of a 
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Jastrow-type trial function for the many-particle boson system is given. 
In Section 3 an approximate expression is given for the function G(r12) 

which is defined by Aviles (1958) and is closely related to the pair-distribution 
function of statistical mechanics. 

The trial expression of the energy obtained with the approximate 
expression for G(rL2 ) is varied (without use of any adhoc integral constraint) 
in Section 4. The interesting result obtained is a new, non-linear, equation 
for the correlation func t ionf  

In the final section we linearise the above integrodifferential equation 
and study its asymptotic behaviour. 

2. The Trial Expectation Value for the Hamiltonian 

We consider a system of bosons in its ground state. The number of 
particles is assumed to be very large and the volume in which the system is 
enclosed is also assumed to be large, such that the density is constant: 

N 
P = D (2.1) 

The Jastrow-type trial many-body wave function is therefore 
N 

Wtr(rl . . . . .  rN) = ~ f ( r i - - U )  (2.2) 
/ < j = l  

The correlation functions f ( r ~ - r j ) - f ( r ~ j )  are taken to have the 
following properties: 

First, they are symmetric: 
f(rl~) = f ( r j 3  (2.3) 

so that 7 ~tr is symmetric, as must be the case for the exact wave function 
for a Bose system. 

Secondly, they are zero for distances less than or equal to the hard core 
radius of the interparticle (short-range) potential V~ 

f(r~j) = 0 for r~ i ~ c (2.4) 

so that ~t r  vanishes whenever r~j is less than or equal to the hard core 
radius of the potential. Note that if there is a soft core potential then 
c -+ 0 and t h e f ' s  should be suppressed for small r~j. 

Obviously, the functions f allow also for correlations due to strong 
forces outside the hard core. 

Thirdly, the correlation functions tend to unity for large inter-particle 
distances: 

lira f ( r l j ) =  1 (2.5) 
rlj-~r 

so that 7 ~tr goes over to the uncorrelated function when the particles are 
very far away from each otheI, in accordance with the asymptotic separa- 
bility of the exact wave function. 
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The expectation value of the Hamiltonian of the system with the trial 
many-body wave function (2.2) is: 

f(r,s)-~ Vk2+ E Vt. ]-[ f(ris)drt...dru 
l< i= l  l=l l<n=l l<d=l 

<H)tr = N 

f I~ f2(rl~)drt...drN 
l<'j= ! 

(2.6) 

One can now proceed to evaluate separately the potential and kinetic 
energy contributions to it. This is done by noting that the integrals in 
equation (2.6) are equal. 

We give here the final result, since the details have been given by Aviles 
(1958). One finds 

(H} tr hz 
VI2 f2(rl2)]G(rl2) dr,2 . . . . .  N �89 f [~m ((vf(r'2))2-f(r'~)v2f(r'2))+ 

. . b  

(2.7) 

where the function G(r~2) is defined by 

]-[ f2(r, s) dr3 .... drN 
N(N-  1) ~<S=l 

(u~(12) (2.8) G(riz) 102 ( N 
lq f2(ris) dr l . . ,  dru 

2 l<.J= 1 

This function is closely related to the better known pair-distribution function 
of statistical mechanics. One has the relations 

G(rl2 ) Z2(r12) ~2(rtz) (2.9) 
f2(rlz ) , Z2(rl2) = p2 

where 
t" 

wz(r12) N(N 1) )[TJi2dr3""drN = - . (2.10) 
f lt[-tl2 dr I dr~ 

according to the notation of de Boer (1948). Here, of course, W = 7 ttr. 
As pointed out by Aviles, the following cluster expansion, known from 

the classical theory of imperfect gases (Mayer & Montroll, 1941; Van 
Kampen, 1961), can be used for G(rl2): 

G(r,2)= ~ pmym(riz)= 1+ ~ p"y,,(r,2) (2.tl) 
m=O m-1 

where 

1 f r~ y,,(riz) = m~! ~ 1~ h(rij)dr', = {r3,...,r,,+2} (2.12) 
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Here, however, the function h(rt~) which is defined by 

h(r~j) =f2(rij ) - 1 (2. i3) 

is different from exp {-V(r~j)/KT} - 1. 
By ~ l-I h(rij) we denote the sum of all connected products for which 

each particle of the set m is connected to particles 1 and 2 by an independent 
path. Diagrams can then be easily drawn to represent the various terms of 
expression (2.11). 

3. The Approximate Expression for G(r~2) 

The basic problem which one faces in calculating the ground state 
energy per particle of the many-body boson system from expression (2.7) 
is the determination of the correlation function f Unlike the situation in 
the classical theory of imperfect gases, the shape of the f i s  unknown and 
must be determined for a given potential. The determination of thefwil l  
be done in the present study by means of functional variation. This is not, 
however, a straightforward task. Particular care is necessary when the 
variational principle is applied to expressions resulting from cluster 
expansions. 

In this section we derive an approximate expression for G(r~2) which is 
very suitable to be used when we vary (H)tr/N, as the analysis of the 
following section will show. In deriving this expression we have used 
previous experience in the impure nuclear matter problem (Westhaus, 
1966; Grypeos, 1970, 1971). 

We write expression (2.8) in the form 

~[ f2(rlj) dr3...drN 
N ( N -  I) t<j=l (ij),+-(lz) (3.1) 

G(r,2) p 2 f  f N f2(rlz)drldr2 ~ f2(r~j)dr3...drN 
l < 2 J ~ l  

( l j ) # ( 1 2 )  

The product 
N 

~[ f2(r,j) 
l < j ~ l  

(l j )@(12)  

which appears both in the numerator and the denominator of this expression 
can be written 

]r . I~ f2(rtj) (3.2) l-[ fZ(rlj) = f2( r . )  �9 f 2 ( r 2 j )  
i < j ~ l  = = I ( i j ) ~ ( 1 2 )  | (l j )  4 : ( |k )  ! 

L (iS) ~ (2/) J 

The approximation which is made is to replace all t he f ' s  appearing in the 
last product of the above expression by unity. This amounts to taking into 
account the correlations between each of the 'interacting particles' (1.2) 
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and all the other particles in the system, but neglecting the correlations 
between these remaining particles. 

Taking into account expression (2.13), we write 

N [N "IVN ] N 
2 r , 2 r ]~ f2(r~s) ~ | ] ~ I f  ( . ) [ ' | ~ f  ( zJ)! = ~-I (1 +k(r~))(1 +k(rz~)) 

t < l = l  k l  =3 J kJ=3 h t=3 
(~j)@(12) 

(3.3) 

Substituting this into expression (3.1) we observe that the integrals in the 
numerator and denominator factorise : 

G(rla)=N(N- 1) [f  (! + k(rl3)) (1 + h(r23))dr3] u-2 (3.4) 

.2 ff2(r~)dr,~'r~[f (1 +h(r~3))(1 + k(r23))dr3] N-~ 

We can easily see by noting that D = N/p and also by adding and subtracting 
2/p ~.1~at 

f ( 1  (1 + k(rz3) dr3 + h(r13)) 

Substituting this into expression (3.1) and using the well-known formula 

we obtain for G(r12 ) 

G(r12) 

( N -  1) 

( e ~ = lim l + (3.6) 
n--)~ 

exp{2 § p f [k(rl3 ) + h(r23)§ k(r~3)h(rz3)]dr3} 
f f2(r,2) e x p  {2 § p f [/i(r13 ) -t- ~(r23 ) § h ( r l 3  ) h( r23) l  dr?} dr,z 

(3.7) 
Therefore, the final result for G(rt2 ) is 

where 

( N -  1) e R(rlz) 
G(rl2) (3.8) 

P ff2(r,2) e R(r'2) drl2 

.R(rl2 ) = p f h(rl3) h(r23) dr3 

o r  

(3.9) 

R(r12)=pf(f2(r~3 - r l z ) - l ) ( f Z ( r l 3  ) - l ) d r l 3  (3.I0) 
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If we expand the exponential in the numerator of  (3.8): 

R R 2 
e R = 1 + ~  +2-!! + " "  ( 3 . 1 1 )  

and compare with the terms resulting from the cluster expansion (2.12), 
we see that our approximate G(ri2 ) (normalised to 1) contains the exact 
zeroth and first-order terms of the cluster expansion (that is, the terms 
with m = 0 and m = 1) and also part of the second- and higher-order terms. 
We can think therefore of expression (3.8) as resulting from a partial 
summation. 

In Fig. 1 we plot the diagrams which correspond to the terms of  the 
cluster expansion with m = 0, 1 and 2. Among the various second-order 
terms the term e has been included in the approximate expression for 
G(rl2 ). This is the 'separable configuration' of Section IIB of Aviles (1958). 

. . 

~ 2 1 2 

rn=O m=l 

3 4 3 4 3 4 3 4 3 4 

1 2 1 2 t 2 1 2 1 2 
a b c d 

m:2 

Figure l.--Diagrams for m = 0, 1 and 2. 

4. A Non-Linear IntegrodifferentiaI Equation for the Correlation 
Function 

With expression (3.8) for G(ri2) the trial expectation value of the 
Hamiltonian takes the form 

(p/2)(N- 1) f [f(r,2) Wlzf(rlz)]eR"~)dr,2 (_ f l>< '  = 
(4.t) 

N p f f2 ( r l2  ) eR(,,2)drl2 

where the 'effective potential' m12 is given by 

h2 [(VS(r,2)'t2 v2S(r, !] 
W,z = f ~ m L ! ~ ]  f(r,2) ]+ V,2 (4.2) 

We can write expression (4.1) as follows (since N - +  co): 

<H>"N 2Pff(r' )Wlzf(r12)eR(r'2)dr12 (4.3) 
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provided that we require 

f (f2(rlz) e R(~'2) - 1) dr12 = finite (4.4) P 

In the following we assume central forces and we take the func t ions fand  
G as depending upon the relative distance r~2 = [r, - r2]. 

Variation of (H)t'/N with constraint (4.4) is equivalent to 

oo 

(4.5) 

c 

where 

2 rh 2[[df~2 _/d2f 2 df~] ] 

+ A(r~2(f z e "(',2) - 1)) (4.6) 

The functional variation leads to the following equation: 

hZ[d2f [ 2 dR\ df] 

[_s ( e]2 .% ] 
+L 4mkr,zdr,2+kd-~2~2] + ~ ] +  V(qa)+A f 

+ r,zdr,zTz+(V(riz)+A)f2. = 0  (4.7) 

where/~ = m/2. The boundary conditions are 

f(c) = 0, f(oo) = 1 (4.8) 

Equation (4.7) is a non-linear integrodifferential equation for the unknown 
correlation function f .  

The function R: has its origin in the dependence of R o n f t h r o u g h  the 
integral expression (3.10). It is given by 

ff(r~3) (f2(lrl3 -- ri2 l) - I) drl3 (4.9) -Ry(rl2) 4p 

The parameter h is the Lagrange multiplier due to constraint (4.4). 
I f  we use the transformation 

f(rl_,) = 1 -- c u(rl2) (4.10) 
El2 
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we obtain, after some algebra, the following equation for the new correla- 
tion function u: 

? 2  h 2 ~ :  h2 e e o ] d 2 u  _ _  - -  - -  , h 2 d R  d,~ r h2 I d e  

[2/x l - 2 m ' g + 2 ~ n "  2 jdr~z+2p.dr l zdr i2+[  2mr,zdr,2 

+ 4-mm\\dr~2! + dr~z] - (V(r~2) + A) (K+ 1) - (V(r~z) + A)Re ~ u 

+ ~.2 -(V(r,2)+Z) 1+~ = c t ~  ~+tdr,d dr,d 

+ (V(r12) + A)u 2] [K 

The boundary conditions for the u(r) are 

u(c) = 1, u@o) = 0 (4.12) 

The function R is given in terms of u by 

--r1212u2(lr13- r121 ) ]r13 Zrl2[ u(] r13 

• (tC@3u2(r,3)- 2t@3u(rx3))dr,3 (4.13) 

For the function R e we have written 

R e = K + Rf  ~ (4.14) 

where K is a constant given by 
K -- 4~ (4.15) 

with 

= p f ( f 2 ( r ) -  1)dr (4.16) 

The value of this constant is discussed in the next section. The function 
Rs ~ is given by 

= (it, ,  ,,2 
2c ) 

r121) irl3 -r12t u(Ir13- rI21) 

(4.t7) 
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Note that the functions R(rl2) and Re~ tend to zero for large rt2, 
provided, of course, that they are calculated with u approaching zero for 
large r~2 sufficiently rapidly. We should also expect that in such a case the 
R(r~2) and Re(rn) tend to zero for large rlz quite rapidly. 

5. Linearisation of the Non-Linear Equation and Investigation of its 
Asymptotic Behaviour 

The non-linear equation (4.7) of the previous section can be reduced 
to a linear integrodifferential equation if we write 

f = A  + A  (5.1) 

and neglect terms of second and higher order inf2. In the above expression 
f~ is a given first approximation t o f  

The linear integrodifferential equation which we obtain for the f2 is the 
following: 

[~2 ~2 p(1)l d2f2- r/~2 {.2_2 dR(1)x~ {h2(fl ~fF~2)).R(fl)]df 2 
- # +~mA' '~  Jdr22 L21x~riz+~rl2]+\2m -~12 dr,2 

~12 ( 2 dR (1, ( d / ' l ' ~ 2  [d2 R ' I ' ~  -t- R `1) 
+[(V(r lD+~)(I+AR'r  G ~+tT~,=]  +k-~,~ ] " 

a~f, 2 ~>,,, af, q,. h~[a~fl (2 a(R'" + R<2,)taf, ] 
drl2 l dri2.1 

+ [-(V(r,2) + A) + ~ \r]-2 7r~z + \ d~lz ] 2 I~ d-~z ] \ d-~iz ] 

~<~,)~ . h~ [ t d : , ~  ~ _ i a V ,  2 
+ dry2 rl2 

x ~r~2iiJ 2 (5.2) 

with boundary conditions 

A(e) = 0, A ( ~ )  = 0 (5.3)  

The functions R C1), R (2), R~ 1) and R~ 2) are defined as follows: 

R(l ) ( r l2)  = p f ( f l 2 ( I r t3  - r121) - 1) (f12(r13) - 1 ) d r l 3  (5.4)  

R(2)(r12) = 4/) f ( f l 2 ( i r l 3  - r l2i)  - 1)fl(rl3)f2(rl3)drl3 (5.5) 
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R}l'(rl2) = K + 4 0 f (fl2([rl3 - r,2 I) - 1) (f,(r,3) - 1) drl3 (5.6) 

R}2)(r12) = 4p f [(fl(Ir13 -r ,21) - 1).2fl (r,3) + (f12([r13 -- rl21) 

-- 1)] f2(r13) dr13 (5.7) 

We should note that it seems preferable in practice to integrate numerically, 
instead of equation (5.2), the equation which results by linearising equation 
(4.11). The appropriate procedure would be, of course, t o  integrate 
numerically equation (4.11) itself. These numerical integrations, although 
complicated, should be feasible with a modern computer (provided, of 
course, that a solution exists). 

Having obtained the correlation function, the trial energy per particle 
can easily be calculated from expression (4.3). 

We discuss finally the asymptotic behaviour of the non-linear equation. 
By virtue of the remark made at the end of the previous section, equation 

(4. ~. I) takes in general the following form for large separations: 

h h 2 K'I d2u 
+ 5-] + + ,1)(K+ 1)l. 

r ,2 [ h 2 [ 2  dR , d 2 R~ (1 
. . . . .  -e a-W- - (V(r,2) + A) \ + K ) - ( V ( r , 2 ) +  `1)~-~] 

c [4m~r12dr12 drl2J 
(5.8) 

Therefore, in order that u tends to zero for r~2 -+ ~o we must choose the 
value of ,t such that K = -2.  So the following condition must be satisfied: 

f (1 - f 2 ( r ) )  dr = 1 2p (5.9) 

In addition, ,1 should be negative. 
From equation (5.8) and the value of K it is also clear that for large r12 

we can define an 'effective' reduced mass/x* of the pair. This is given in 
terms of the actual reduced mass by/z* = 2tz. 
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